ヤン・エルスター『酸っぱい葡萄』を読んでいて, よく分からなかったところ (pp.221-228) について内容と疑問点を整理しておく.*1 特にこの部分は, 選好の「自律」と厚生のトレードオフを指摘し, 新たな功利主義批判を提起した本書の核心でもある. 本文やページ番号は以下の邦訳を参照している.
エルスターの定式化の整理
原著の該当箇所では「適応的選好が功利主義に対して有する関連性について議論するために」(p.219),「産業革命は, 総体として良いものであったのか, それとも悪いものであったのか」(p.220) という問いについて議論がなされている.
この問題について功利主義者が何を言えるかを考えるために, エルスターは以下のような定式化を与えている. *2
- ある
人の社会を考える. 人々の集合を
とする.
- 実現可能集合を
とする. ここで,
は産業化する前の社会,
は産業化した社会,
はすべての人が(社会
より)多く産業化の利益を得ている社会, をそれぞれ表す. *3
- 産業化する前の社会
において, 各人は効用ベクトル
をもつ.
とする. *4
-
- 例えば,
は, 「個人1は, 産業化する前の社会
においては, 社会
を
, 社会
を
, 社会
を
とそれぞれ評価している」ということを表す.
- 上の例において, 効用が序数的である場合は, 「個人1は, 産業化する前の社会
においては,
となる選好順序
をもっている」ことを意味する. *5
- 例えば,
-
- 産業化した社会
において, 各人は効用ベクトル
をもつ.
とする.
-
- なお,
とする. *6
- なお,
-
- 可能な効用ベクトルの組の集合を
とする.
である.
この定式化の特徴的なところは, 実現している社会に応じて人々のもつ効用ベクトル(原著では効用関数)が変わる, という設定となっていることである. この設定こそがエルスターによる「適応的選好形成」の議論における核心的/革新的な部分となっている.
ここで, 二つの社会厚生関数 を考える. *7 社会厚生関数
が効用ベクトルの組
を与えられたときの社会厚生ベクトルを
とする. 社会厚生ベクトルは, 各人の効用ベクトルが社会厚生関数によって集計された結果を表し, 第1要素・第2要素・第3要素がそれぞれ社会
,
,
の集計された評価値(序数的なケースではランキング)を表すとする.
- 社会厚生関数
は, 以下を満たすものとする*8:
- F1: 産業化する前の社会における効用ベクトルの組
に従えば,
を選択する.
- つまり,
および
.*9
- つまり,
- F2: 産業化した社会における効用ベクトルの組
に従えば,
,
,
の順に社会を評価する.
- つまり,
.
- つまり,
- F1: 産業化する前の社会における効用ベクトルの組
- 社会厚生関数
は, 各人の効用ベクトルの和をとるものとする.
-
- 例えば,
の社会で,
のとき,
となる.
- 例えば,
-
最後に、以下の3つを仮定する:
- A1:
および
,
- A2:
,
- A3:
.
A1,A2は, が
と同じく, 産業化する前の社会における効用ベクトルの組
に従えば
を選択し, 産業化した社会における効用ベクトルの組
に従えば,
,
,
の順に社会を評価することを意味している。*10
とくに最後の仮定A3が重要である. これは,「産業化する前の社会 における各人の
への評価の総和が, 産業化した社会
における各人の
への評価の総和よりも大きい」ことを意味している. エルスターの説明を引用すると,「
は
よりもずっと良いものであるがゆえに新しい水準での欲求を創出するのに十分であり, その欲求不満は実際に人々を
において, 彼らが
に置かれていたならば享受していたであろうよりも基数的に悪い状況に置く」(pp.223-224) ということである.
ここまでがエルスターの定式化(を整理して書きなおしたもの)である. ここから私の疑問点を挙げていく.
疑問点1.
エルスターは自らの与えた定式化について以下の通り説明している:
このことは, 産業化以前 (記事注: 社会
) には序数的なケース (記事注:
) においても基数的なケース (記事注:
) においてもともに, 諸個人はあらゆる実現可能な世界 (記事注:
) の中で最もいい生活を送っている, という事を意味する. (p.223)
これは仮定F1およびA1から言えるという事なのであろうが, 不適切であると思われる. 「諸個人はあらゆる実現可能な世界の中で最もいい生活を送っている」ということは, 諸個人の効用ベクトルが与えられていなければ主張できないが、それについて本文では何も仮定されていないからである. さらには, 仮に効用ベクトルの組が与えられていたとしても, 以下のような反例が考えられる:
-
- 分かりやすく極端なケースを考える.
の社会で,
とする. このとき仮定F1よれば
は何にせよ
を選択し, 一方で
となるので
も
を選択する. このケースはF1,A1を満たすが, 個人2,3は彼らにとって最もいい生活を送っているわけではない.
- 分かりやすく極端なケースを考える.
同様の疑問が, 直後の以下の記述にも当てはまる:
産業化以後 (記事注: 社会
) には, このことはもはや真実ではない. 社会選択はいまやずっと産業化された世界 (記事注: 社会
) を選ぶだろうからである.
上の例からも分かる通り, エルスターの定式化では, 各人の順序とその集計された順序が同じであるとは限らないが, なぜこのようなことが言えるのだろうか.
疑問点2.
エルスターはこのケースの分析から以下を結論づけ (pp.224), 最終的にこれらが功利主義への反論となることを論じている (pp.227-228):
- 序数的な功利主義者は社会
のどちらがより推奨されるかを決定することが出来ず, 指針を与えることが出来ない. (社会
では
の方が良く, 社会
では
の方が良いとしか言うことが出来ない.)
- 基数的な功利主義者は, 効用の総和がより大きい社会
を選択せざるを得ないが, その結論は直観に反するので受け入れがたい.
これらの結論それ自体は正しいと思われるが, 以下ような疑問が残る.
- 産業化の良し悪しという当初の疑問に答えるなら, 比較すべきは
ではなく
ではないだろうか. というのも
はあくまでまだ実現していないだけであって, 産業化によって実現可能となるより良い社会なのであり, 少なくともこのモデルにおいては, 産業化によりもたらされる真の社会的価値を測るにふさわしいものと考えられるからである.
- エルスターはこの社会
について何の実質的な仮定も置いていないが, 仮にこの状態が以下を満たすならば, 序数的な功利主義者も
の方が
よりも良いと結論付けることは可能である:
-
における人々の効用ベクトルの組を
とする.
- すべての人々は,
において
を,
においての
よりも高く評価している.
-
- エルスターはこの社会
- エルスターは仮に
という選択肢がなかったとしても, 自分の議論は成り立つとしている (p.224). *11 その場合の仮定A3の説明の修正として, 以下の通りやや怪しげなことを述べている:
「われわれはこれらの奇抜で新しい品物を手に入れることで前よりも幸せになった. しかしいまやわれわれはそれらなしには惨めな思いをしてしまうだろう.」これがありそうもないストーリーではないことは明らかである.
-
- 端的に言って, エルスターの2つ目の結論は仮定A3に大きく依存しているのであり, むしろその仮定にそれほどの妥当性がないことが直観に反する結論をもたらしていると考えた方が良いのではないだろうか.
- こんなことを言わずとも, 総和主義的な功利主義が擁護しがたいということは, 効用の個人間比較可能性に関する怪しい仮定を置く必要があるなどの既知の理論的欠陥を指摘するだけで十分であると思われる.
*1:私の読解力不足によりこの本にはよく分からないところが多いが, ここは特によく分からなかった.
*2:原著の定式化にはあいまいな部分が多いので, 可能な限り明示的になるように書き直している.
*3:原著では について「より多くの人々が産業化の利益を受け取っている社会, あるいはすべての人々がより多くの利益を受け取っている社会」(p.222) としているが, 簡便のためここでは後者としている. そもそも, すべての人々がより利益を得ているのかそうでないのかで, パレート基準を満たすかどうかが変わるので, 原著の時点で明確にしておくべきところである.
*4:原著では効用関数としているが, 実現可能な状態が3つしかないこのケースでは, この定式化で十分である. 以下同様.
*5:一般に は,
で
が
よりも好まれることを表す二項関係である.
*6:この仮定は原著では明示されていないが, これを仮定しないとこれ以降の議論が意味をなさないので, 置いていると思われる.
*7:原著はこれらを社会選択関数 (social choice function) と呼んでいるが, 選択結果ではなく順序 (ランキング) が出力となる関数である原著のような場合には, 社会厚生関数 (social welfare function) と呼ぶ方がより適切である. 原著では序数的・基数的の2つのケースが想定されている. ここでは が序数的,
が基数的なケースにそれぞれ該当する.
*8:原著では以下を効用ベクトル についての仮定だとしている. しかし, ここまで
については「何らかの種類の社会選択関数であるに違いない」(p.222) としか述べられておらず, それが具体的にどのような特性(パレート最適である, 非独裁的である, etc.)を持つ関数であるのかが全く記述されていない. したがって, 以下で与えられる
による選択結果についての仮定から, 人々がどのような効用ベクトルを持ちうるのかを逆算することは不可能である. エルスターの意図はどうあれ, これらの仮定は社会厚生関数
について仮定であると考えざるを得ないと思う.
*9:念のため, は 効用ベクトルの組
が与えられた時の, 社会厚生ベクトルの第1要素であり, 社会
に対する各人の評価の
による集計結果を表す. 以下同様.
*10: の関数形はすでに与えられているので, これらを満たすような効用ベクトルの組になっているということである. A1-A3については, エルスターの意図通り, 効用ベクトルの組に関する仮定になっている.
*11:原著には「 における社会選択が
ではなく
を選ぶとしても」とあるが、「
における社会選択が
ではなく
を選ぶとしても」の誤植であると考えられる.









